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“I've seen things you wouldn’t believe…. 
….starships on fire off the shoulder of Orion.  
I watched c-beams glitter in the dark  
near the Tannhäuser Gate”. 



What the past tells us about the future 

     Stephen Norman 

Quant Conference London 1 Nov 2019 
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“Those who have no history are doomed to repeat it”
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The picture’s pretty bleak, gentlemen…the world’s  
climate is changing, the mammals are taking over,  
and we all have a brain the size of a walnut.”  
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30 years of the FTSE-100

Source: Yahoo Finance
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Black Monday: the making of a legend

Source: Autopilot - Own work, CC BY-SA 3.0

Adrian Pinkus
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August 1998 – a surprising dinner

Source: Yahoo Finance

Connie Voldstad (later years) 
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Source: JayHenry - Own work, Public Domain

As the ruble collapsed, so did LTCM
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Collapse of the dot coms

Source: Yahoo Finance
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NASDAQ 1998 - 2002
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1998 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2010

Y2K

The Patriot Act Ch III

SOX

MiFiD I

Dodd Frank

FATCA

MiFiD II

Volcker Rule

GDPR

Since Y2K, there has always been a major US/Euro reg. initiative
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True AI 
smarter than 

us

Earth 
uninhabitable

Last pure 
human born

2100 AD
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There will always be crazes.  
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1979 – 2019: constant migration to the vanilla:

Interest rate derivatives

Precious metals

Credit default swaps & options

Mortgages and CDOs

Weather derivatives

Property and insurance

• Higher volumes, faster execution 
• Lower spreads and commissions 
• Commoditised research 
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DATA REMAINS EXPENSIVE & VALUABLE

New assets, old facts:

• HOW-TO KNOWLEDGE IS FREELY AVAILABLE 

• COMPUTE POWER IS ON DEMAND & CHEAP 

• LOTS OF CODE IS OPEN SOURCE AND FREE 
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Only the first movers make money.
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..feels like a bubble.  Two bubbles 

1. Tech IPOs  
• (Uber, WeWork, Pinterest, Lyft…) 

2. Fintech, Insurtech….

RIGHT NOW…
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• Crypto/blockchain is a cute tech ecosystem 
• Based on a simple fallacy 
• Technically it’s nuts but…  
• …the supertechies are hypnotised by its ingenuity 
• Consultants are bewitched by $$$ 
• Practitioners are running (away) hard 
• And the “business” is afraid to ask 

Blockchain is a bust

The Emperor has no clothes!
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• The $-clearing weapon has been over-used 
• China and Russia hate it 
• It will be slow but eventually… 
• …there will be an alternative. 

• PS.  It will not be cryto. 
• PPS.  Bitcoin is here to stay

USD: time for a change?



There will always be surprises 

Would you want it any other way?  
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Handover to legends of the industry…
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A chariot race about to start The blockchain team 
arrives!

Lots of horsepower…lots of drag  and hype.
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SCOPE OF THIS TALK

DATE SUPPLIER TRAN NO TYPE QTY PRODUCT DELIVERY  
STATUS

PAY STATUS

3 Mar 19 Calif Fruit 401943 BUY 8900 Apples Ordered LOC

3 Mar 19 Del Monte 401944 BUY 10000 Pineapples Arrived Pending

4 Mar 19 Walmart 401945 SELL 500 Pears Packed Billed

IMMUTAB
LE

DISTRIBU
TED

CONSENS
US

A LEDGER

A PERMISSIONED  
BLOCKCHAIN LEDGER

CENTRAL 
RIGHTS 
MGMNT

+

=



(Permissioned) blockchain solutions1

• IBM blockchain system – trade financing - has saved 75% time IBM spent on transaction 
disputes   

• Walmart has created a supplier blockchain.  You can tell where a mango comes from in 2.4 
seconds, and it used to be days… 

• Everledger provides a distributed ledger that assures the identity of diamonds, from being 
mined and cut to being sold and insured that “can reduce blood diamond trade”. 

• UK Government Chief Scientific Advisor:  capital markets still rely on paper records to 
reconcile a trade between counterparties.  Blockchain can provide transparency & keep 
the regulators happy  

• Interbank settlement of “stocks and shares.” Autonomous Research says blockchain could 
take 30% out of $54 billion annual coss of securities processing, saving $16 billion.  By 2021! 

• Blockchain may help the nemesis of big IT projects, the national patients’ record scheme.   

• Chancellor Philip Hammond says blockchain technology may help solve the Irish border 
question.

1 In ascending hype order
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THESE CLAIMS ARE ALL BOGUS
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THESE CLAIMS ARE ALL BOGUS 
NOT BECAUSE THEY ARE UNTRUE 
BUT BECAUSE YOU CAN ACHIEVE  
THE SAME BUSINESS FUNCTIONALITY  
QUICKER, CHEAPER AND MORE RELIABLY 
WITH CONVENTIONAL TECHNOLOGY
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SO WHY USE BLOCKCHAIN ?

1.TRUST
2.  IMMUTABILITY

4.  SMART CONTRACTS

3.  NO MIDDLEMEN
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It’s 1890 in this idyllic Alpine village

But all is not well…
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The trust credentials of distributed ledgers 
rest on a beguiling confusion:  

that it is better to have many private  
versions of the truth than a single public  
version that everyone can see and dispute
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SO WHAT JUSTIFIES THE EXPENSE?

1.TRUST
2.  IMMUTABILITY

4.  SMART CONTRACTS

3.  NO MIDDLEMEN
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TALENT AS AN ASSET CLASS 
AIR SUMMIT

SHAM MUSTAFA   |   CO-FOUNDER & CO-CEO, CORRELATION ONE

ALPHA VIA QUANTITATIVE PEOPLE-SELECTION

!1

http://www.correlation-one.com/
mailto:rasheed@correlation-one.com


The fundamental law of active management

IR    =      N     x     IC
Information  
Ratio

Information  
Coefficient

# Investment 
Opportunities



The fundamental law of active management

# Bets Skill per Bet

X



Quant investors exploit the fundamental law

More bets via access to new markets


More bets via high-frequency trading


More bets via automation

X

# Bets Skill per Bet

Backtesting to measure skil l  per bet


Better data & models to improve skil l



A simplistic model of quant investing:  
The Stock Screen

EXAMPLE MODEL ONLY INVEST IN STOCKS WITH P/E RATIO < 12



BY AUTOMATING YOUR FILTERING 
LOGIC, YOU CAN MASSIVELY INCREASE 
YOUR TOTAL NUMBER OF BETS

Once a model is built, increasing its scope of bets is trivial



However… 

Simple P/E model 
worked well in the 
1970s and 1980s…

… until it became a 
crowded trade in the 
1990s and 2000s

A MODEL, NO MATTER HOW SMART, ONLY HAS 
"EDGE" IF IT IS AHEAD OF THE CURVE

1980                             1990                             2000                             2010



There is enormous power in 
discovering new asset classes

Yale’s 
endowment has 
outperformed by 
discovering non-
traditional asset 
classes



There is enormous power 
in discovering new asset 
classes
Bitcoin’s emergence created a 
new asset class opportunity for 
early investors



What is the undiscovered asset class today? 

?



What is the undiscovered 
asset class today? 

People!



Do people qualify as an asset class? 

LARGE NUMBER OF INDEPENDENT INSTANCES 

HIGH VARIANCE IN PERFORMANCE ACROSS INSTANCES 

VARIANCE IN PERFORMANCE OF A SINGLE INSTANCE OVER TIME 

SIGNIFICANT BOTTOM-LINE IMPACT GIVEN CORRECT OR INCORRECT 
INSTANCE SELECTION



If talent is an asset class, how should 
we conceptualize "talent alpha"? 



The fundamental law of talent alpha

IRp   =    Np      x     ICp  
PEOPLE 
INFORMATION  
RATIO

PEOPLE 
INFORMATION  
COEFFICIENT

# PEOPLE 
OPPORTUNITIE
S



The fundamental law of talent alpha

X
# PEOPLE BETS SKILL PER HIRE



Common practices today

More bets only through 
high turnover


Recruit from a few, highly-
competitive talent pools

Imprecise qualitative interviews


Track-record analysis ( luck or skil l?)


No backtesting of interview process


X
# PEOPLE BETS SKILL PER HIRE



How it can be done better

SYSTEMATICALLY EXPAND THE 
BREADTH OF YOUR CANDIDATE 
FUNNEL…

… AND IMPROVE YOUR 
ASSESSMENT FILTER



Breadth of Funnel 
x  
Filter Accuracy 
=  
Quality of Hires



How to improve your candidate funnel

CODE JAM 
Google CodeJam is a global 

hackathon that attracts 25,000 
candidates per year

HACKERCUP 
Facebook launched the HackerCup in 
2011. The competition series has over 

1.1 million likes on Facebook.

THE DATA OPEN 
Correlation One and Citadel partner to 
run The Data Open, a series of live data 
science competitions for top students.

THOUGHTFUL TALENT PROGRAMS BOOST EMPLOYER BRANDS AND ENGAGE CANDIDATES AT SCALE



CASE STUDY #1: CITADEL

Problem 
Citadel wanted dramatically expand the breadth of its 
funnel and win top 1% candidates over leading tech 
firms like Google and Facebook 

Solution 
A series of global live data science competitions for 
students of over 25 top universities around the world 

Results 
The competitions attracted over 25,000 elite students to 
Citadel’s candidate funnel

THE WORLD’S BIGGEST AND MOST PRESTIGIOUS LIVE DATA SCIENCE COMPETITION



CASE STUDY #1: CITADEL
THE DATA OPEN EARNED A HARVARD BUSINESS SCHOOL CASE STUDY



CASE STUDY #2: XTX MARKETS
AN ONLINE FORECASTING COMPETITION FOR TOP QUANTS AROUND THE WORLD

XTX Markets Global 
Forecasting Competition

Problem 
XTX Markets wanted to hire the world’s best quants no matter 
where they lived in the world. 

Solution 
An online, global forecasting challenge, where contestants 
developed models to predict financial data 

Results 
Over 4,000 candidates applied. Top performers included 
graduates from top schools like Harvard and Stanford, but also 
outliers from areas like Latvia, Bulgaria, and New Zealand.



How to improve your filter accuracy
DECOMPOSE THE IDEAL CANDIDATE PROFILE INTO DISTINCT WORKFLOWS AND SKILLS

Multi-factor talent assessment 
frameworks for data, engineering, 
and investment talent.


The frameworks generate candidate 
data points across multiple, 
independent factors.


Candidates that pass the automated 
screen are ultimately sent through 
for human processing.



CASE STUDY #2: IMC MARKETS

Skill Benchmark Report on Every Candidate

AUTOMATED ASSESSMENTS TO EVALUATE QUANT AND TRADING SKILLS IN CANDIDATES

Problem 
IMC Markets wanted to improve the accuracy of its pre-
interview candidate filter, so hiring managers could 
prioritize their time on top candidates 

Solution 
Custom-built data science skills assessments, automated 
and benchmarked against population-level averages 

Results 
A new filter that is 5x more predictive of candidate success 
than other filters (e.g. university grade point average)



Get in touch @ 
sham@correlation-one.com
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What you don’t know counts

David J. Hand

Imperial College, London

1
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Princeton University Press
January 2020
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Big data

Personal data

Open data

Confidential data

Administrative data

Observational data

Data trail

Pseudonymised data

Data exhaust

Anonymised data

Experimental data
Survey data

Artificial intelligence

Statistics

Machine learning

Data science

Analytics

Alternative data
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Big data

Personal data

Open data

Confidential data

Administrative data

Observational data

Data trail

Pseudonymised data

Data exhaust

Anonymised data

Experimental data
Survey data

Artificial intelligence

Statistics

Machine learning

Data science

Analytics

Alternative data
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• These all tell you about the data you have

• But they don’t tell you about the data you don’t have

• They don’t tell you about the problems that can arise 
because you are missing some crucial data

• The data you don’t have can be even more important 

than the data you do have

• The data you don’t have or cannot see are dark data
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- elephant powder

https://listverse.com/2012/03/05/top-10-facts-about-elephants/
Morbidity and Mortality Weekly Report, Nov 30, 2018 / Vol.67/No.47 
https://fighterjetsworld.com/air/fighter-jets-videos/378-bullet-holes-no-flaps-and-no-speed-brakes/7627/
NASA/Goddard/MODIS Rapid Response Team
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- elephant powder

- measles eradication

https://listverse.com/2012/03/05/top-10-facts-about-elephants/
Morbidity and Mortality Weekly Report, Nov 30, 2018 / Vol.67/No.47 
https://fighterjetsworld.com/air/fighter-jets-videos/378-bullet-holes-no-flaps-and-no-speed-brakes/7627/
NASA/Goddard/MODIS Rapid Response Team
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- elephant powder

- measles eradication

https://listverse.com/2012/03/05/top-10-facts-about-elephants/
Morbidity and Mortality Weekly Report, Nov 30, 2018 / Vol.67/No.47 
https://fighterjetsworld.com/air/fighter-jets-videos/378-bullet-holes-no-flaps-and-no-speed-brakes/7627/
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- elephant powder

- measles eradication

- bullet holes in aircraft

https://listverse.com/2012/03/05/top-10-facts-about-elephants/
Morbidity and Mortality Weekly Report, Nov 30, 2018 / Vol.67/No.47 
https://fighterjetsworld.com/air/fighter-jets-videos/378-bullet-holes-no-flaps-and-no-speed-brakes/7627/
NASA/Goddard/MODIS Rapid Response Team
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- elephant powder

- measles eradication

- bullet holes in aircraft

- Hurricane Sandy

https://listverse.com/2012/03/05/top-10-facts-about-elephants/
Morbidity and Mortality Weekly Report, Nov 30, 2018 / Vol.67/No.47 
https://fighterjetsworld.com/air/fighter-jets-videos/378-bullet-holes-no-flaps-and-no-speed-brakes/7627/
NASA/Goddard/MODIS Rapid Response Team
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https://www.nasa.gov/mission_pages/shuttle/flyout/shuttleachievements.html
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It took months for the official investigation to conclude
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It took months for the official investigation to conclude

But Morton Thiokol’s stock price crashed 11.86% on the day 
of the disaster
(changes of more than 4% in its price were rare)
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It took months for the official investigation to conclude

But Morton Thiokol’s stock price crashed 11.86% on the day 
of the disaster
(changes of more than 4% in its price were rare)

The stock prices of other companies involved in constructing 
the shuttle launch vehicle also slumped, but by less
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Rate of heart disease in Japan vs US
Japan US

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/
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Rate of heart disease in Japan vs US
Japan US

Heart disease rate / 100000 41 < 87

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/
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Rate of heart disease in Japan vs US
Japan US

Heart disease rate / 100000 41 < 87

% men who smoke 35 > 17

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/
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Rate of heart disease in Japan vs US
Japan US

Heart disease rate / 100000 41 < 87

% men who smoke 35 > 17
Systolic blood pressure (mmHg) 130 > 123

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/
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Rate of heart disease in Japan vs US
Japan US

Heart disease rate / 100000 41 < 87

% men who smoke 35 > 17
Systolic blood pressure (mmHg) 130 > 123
Cholesterol level (mg/dl) 201 > 197

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/
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Rate of heart disease in Japan vs US
Japan US

Heart disease rate / 100000 41 < 87

% men who smoke 35 > 17
Systolic blood pressure (mmHg) 130 > 123
Cholesterol level (mg/dl) 201 > 197

“Known”  to be because of protective effect of diet high in omega-3

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/


26

Rate of heart disease in Japan vs US
Japan US

Heart disease rate / 100000 41 < 87

% men who smoke 35 > 17
Systolic blood pressure (mmHg) 130 > 123
Cholesterol level (mg/dl) 201 > 197

“Known”  to be because of protective effect of diet high in omega-3

Heart attacks are low status disease in Japan, implying manual labour

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/
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Rate of heart disease in Japan vs US
Japan US

Heart disease rate / 100000 41 < 87

% men who smoke 35 > 17
Systolic blood pressure (mmHg) 130 > 123
Cholesterol level (mg/dl) 201 > 197

“Known”  to be because of protective effect of diet high in omega-3

Heart attacks are low status disease in Japan, implying manual labour
Strokes are high status disease in Japan, implying cerebral labour

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
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Rate of heart disease in Japan vs US
Japan US

Heart disease rate / 100000 41 < 87

% men who smoke 35 > 17
Systolic blood pressure (mmHg) 130 > 123
Cholesterol level (mg/dl) 201 > 197

“Known”  to be because of protective effect of diet high in omega-3

Heart attacks are low status disease in Japan, implying manual labour
Strokes are high status disease in Japan, implying cerebral labour

So what would be diagnosed as a “heart attack” in the US
is likely to be classified as a “stroke” in Japan

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/
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Rate of heart disease in Japan vs US
Japan US

Heart disease rate / 100000 41 < 87

% men who smoke 35 > 17
Systolic blood pressure (mmHg) 130 > 123
Cholesterol level (mg/dl) 201 > 197

“Known”  to be because of protective effect of diet high in omega-3

Heart attacks are low status disease in Japan, implying manual labour
Strokes are high status disease in Japan, implying cerebral labour

So what would be diagnosed as a “heart attack” in the US
is likely to be classified as a “stroke” in Japan

Stroke rate 33.6 > 23.7
https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322

https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/

https://medium.com/the-mission/why-japanese-men-have-far-less-heart-disease-badbc3841322
https://www.worldlifeexpectancy.com/cause-of-death/coronary-heart-disease/by-country/
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Fifteen types of dark data

Not mutually exclusive:
they can occur together
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Two of the 15 types will be familiar to you:
Type 1: data we know are missing

Type 2: data we don’t know are missing
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Two of the 15 types will be familiar to you:
Type 1: data we know are missing

Type 2: data we don’t know are missing

These are Donald Rumsfeld’s known unknowns and unknown unknowns
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Two of the 15 types will be familiar to you:
Type 1: data we know are missing

Type 2: data we don’t know are missing

These are Donald Rumsfeld’s known unknowns and unknown unknowns

(1) Pundit’s views on share prices when they don’t tell you
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Two of the 15 types will be familiar to you:
Type 1: data we know are missing

Type 2: data we don’t know are missing

These are Donald Rumsfeld’s known unknowns and unknown unknowns

(1) Pundit’s views on share prices when they don’t tell you

(2) Crowdsources views on the movements of a particular share price
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Type 3: choosing just some cases

A psychic’s successful predictions

Type 4: self-selection

The customers who shop at a particular store

Type 5: missing missing variables

Who survived the Titanic ?
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Crew Third class 
passengers

212/908 151/627 



37

Crew Third class 
passengers

212/908 
= 23.3  %

151/627 
= 24.1  %<
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Crew Third class 
passengers

212/908 
= 23.3  %

151/627 
= 24.1  %

Crew Third class 
passengers

Men 192/885 75/462

<
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Crew Third class 
passengers

212/908 
= 23.3  %

151/627 
= 24.1  %

Crew Third class 
passengers

Males 192/885 
= 21.7  %

75/462
= 16.2  %
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Crew Third class 
passengers

212/908 
= 23.3  %

151/627 
= 24.1  %

Crew Third class 
passengers

Males 192/885 
= 21.7  %

75/462
= 16.2  %

Females 20/23 76/165

<

>
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Crew Third class 
passengers

212/908 
= 23.3  %

151/627 
= 24.1  %

Crew Third class 
passengers

Males 192/885 
= 21.7  %

75/462
= 16.2  %

Females 20/23 
= 87.0  %

76/165
= 46.1  %

<

>
>
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Sometimes data are dark by design
UK Equality Act (and other similar elsewhere):

People must not be treated differently on the basis of their 
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Sometimes data are dark by design
UK Equality Act (and other similar elsewhere):

People must not be treated differently on the basis of their 
group membership rather than on the basis of their own merits

(for certain “protected characteristics”: sex, religion, etc)

ї�ŵƵƐƚ�ŶŽƚ�ŝŶĐůƵĚĞ�ƚŚĞƐĞ�ĐŚĂƌĂĐƚĞƌŝƐƚŝĐƐ�ŝŶ�ĂŶǇ�
decision-making process
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But the EU Gender Directive (2004/113/EC) included a clause 
saying:

“proportionate differences in individuals’ [insurance] premiums and 
benefits …[are allowed]
where the use of sex is a determining factor in the assessment of 
risk …
[when there are] relevant and accurate actuarial and statistical 
data.”

That meant different driving insurance premiums for males and 
females were allowed
provided there was data showing the risks differed
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incompatible with the principle of equal treatment for men 
and women

From 2012, it was illegal to have differential insurance 

premiums based on gender
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But in 2011, the European Court of Justice decided this was 
incompatible with the principle of equal treatment for men 
and women

From 2012, it was illegal to have differential insurance 

premiums based on gender

Females previously had lower motor insurance premiums, 
but these differences would no longer be allowed,
even though the data showed females to be safer drivers
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Change in size of premiums

£ Before After
Men 658 619

Overall average premiums

Women 488 529
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There are other consequences of making the data dark
- more young men can now afford insurance
- so more young men on the road
ї�ŵŽƌĞ�of the riskier drivers on the road

- fewer young women can now afford insurance
- so fewer young women on the road
ї�fewer of the safer drivers on the road

ї�more accidents and higher premiums for everyone

- UK: men cause 95% of “deaths 
by dangerous driving” 

- UK: men commit 82% of 
speeding offences
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From The Times, 31 July 2018:

The consequences can be surprising

Man changes his gender to get cheaper car insurance
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From The Times, 31 July 2018:

Reducing his insurance bill by £649 per year

The consequences can be surprising

Man changes his gender to get cheaper car insurance
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The law might require data to be concealed in ways which 
are not conducive to effective statistical modelling:

GDPR
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So what do we do about dark data?
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Shining a light

Use what you do know about what you don’t know

- Not Data Dependent (NDD)

It’s missing for reasons unrelated to the data

- Seen Data Dependent (SDD)

It’s missing for reasons related to data you have got

- Unseen Data Dependent (UDD)

Based on Donald Rubin’s taxonomy
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Shining a light

Use what you do know about what you don’t know

- Not Data Dependent (NDD)

It’s missing for reasons unrelated to the data

- Seen Data Dependent (SDD)

It’s missing for reasons related to data you have got

- Unseen Data Dependent (UDD)

It’s missing because of the values you would have obtained

Based on Donald Rubin’s taxonomy
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The key:

Modelling how you don’t know what you don’t know

NDD: equivalent to a smaller sample

SDD: predict what you don’t know from what you do

UDD: need to make extra assumptions
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The power of dark data

Deliberately darkening data
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Algorithmic performance is evaluated by seeing how they 
do on data they have not yet seen

Surveys collect data on a sample of cases, treating the 
others as dark

In clinical trials treatments are randomised and researchers 
are blinded, so the treatment received is dark
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In 1927 Holland adopted a confidential system of reporting 
causes of death

And the number of deaths in Amsterdam attributed to syphilis 
increased dramatically

Previously invisible data is made visible

by making other data invisible

Strategic application of ignorance

Bowker and Star p141
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Simulation
Smoothing

Bootstrap
Boosting

…

can all be viewed as generating previously unseen, dark, data
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Your medical records
Your financial records

Passwords keep data dark

Allowing you to selectively reveal data

Opt in and opt out? 

Bowker and Star p141
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Sophisticated strategic use of dark data can be a very 
powerful tool

But dark data has serious risks
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In conclusion

Sophisticated strategic use of dark data can be a very 
powerful tool

But dark data has serious risks

The drunk looking for wallet beneath a lamppost

If you ignore dark data,

you are behaving like that drunk
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A I - B a s e d  M a c r o  S t r a t e g y  
 

human-machine col laboration and the problem of causal ity  
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1. Why Use AI 
 identifying, predicting and trading causality 

 
2. Causality as a Deep Object 
 few stylized theoretical facts 

 
3. Why AI Works 
 AI-based macro strategy works in theory 

 
4. Building an AI-Based Macro-Investment Strategy 
 how to make AI work in real life 
 
5. Understand the Why(s) 
 meta-learning and inferring causal structures 
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Disclaimer  
The opinions expressed in this presentation are those of the author. They do not purport to reflect the opinions 
or views of Brevan Howard or its members.  



W h y  U s e  A I  
identifying, predicting and trading causality  

3 
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Macro Financial Markets as a Large Network  

4 

A 

o Think about an asset 𝐴 as being a ‘node’ immersed in a very large web of 
relationships where the other nodes are essentially hundreds of macro variables 
describing the state of the economy and few other assets. 
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Understanding, Predicting and Trading Causality    
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𝒓 𝑨𝒔𝒔𝒆𝒕 in the future   =    𝑬  𝒓𝑨𝒔𝒔𝒆𝒕 in the future      𝑴𝒂𝒄𝒓𝒐 past, now   ∪   𝑨𝒔𝒔𝒆𝒕 past, now  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

what we know about the market what we don’t know what the model tells us 

model 

o Identify causality is key in order to make profitable predictions 

causality 
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Causalities as Algorithmic Subtleties     

6 

o Identifying causalities? 
 
• Initial selection of macro driving factors 
• Stability 
• Interaction between factors 
• Cycles, boom-burst phenomenon and reflexivity 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

o Market is a deep object with deep algorithmic subtleties that are hardly 
captured by invoking multi-linear models.  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

A 



C a u s a l i t y  a s  a  D e e p  O b j e c t  
few stylized theoretical facts 
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 Learning Algorithmic Complexities  

8 

o Building a machine learning model? Remember a profound thought from R. 
Solomonoff (A Formal Theory of Inductive Inference, 1964): 
 

 Proposition 
 Learning is compressing complexity by accepting a given amount of 
 uncertainty. 
 
  

 
 
 
 
 
 

o Machine Learning: efficient solution to learn algorithmic subtleties of a system 
M:  𝑋 → 𝑌 that transforms a ‘thing’ 𝑋 into another ‘thing’ 𝑌 

M: 𝐴 
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 Fighting Uncertainty 

9 

o Building a model of such a system M is about reducing its apparent complexity 
and fighting against its inherent uncertainty. 

 
 
 
 
 

o The task should be easier if the amount of remaining disorder which is not 
captured by the model is relatively small: a model always fights against the 
system’s entropy (*). 
 

 Proposition 
 Complexity is not disorder. A model is searching for order. 
 A macro-investment model is trading order. It does not trade noise. 
 
 
 
(*) Shannon entropy measures the remaining microscopic uncertainty despite a good 
macroscopic description. 
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o In algorithmic and information theories it all begins with data. 

 Algorithm is a Narrative  
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o But, what can we say about a random 
string 𝑆 that contains 1 billion of 0 
and 1?  

o What can we say about a string 𝑆 containing 1 billion of 0? A short efficient 
narrative - an algorithm, much shorter than 𝑆 itself - is: 

‘1 billion of 0’ 

o Nothing. Impossible to find out an efficient macroscopic description of such a 
string so that the remaining microscopic uncertainty is small: 

‘random series of 1 billion of 0 and 1’ 
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o Model = ‘random series of 1 billion of 0 and 1’? Its Shannon’s entropy is very high 
because the exact knowledge of 𝑆 values stemming from this description is very 
small.  
 

 

 Narrative Against Entropy  

11 

o Crucial implication for macro-investment model: 
 
 Proposition 
 If a model fails to capture enough algorithmic subtleties then it will suffer 
 from high entropy. 
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o A string of 0 and a random string are both intuitively trivial. They are not 
interesting in terms of organized complexity. 

 From Complexity to History  

12 

o However, many natural structures (biotope) and many social systems (financial 
markets, economies) are clearly not trivial: they contain a nontrivial history. 
 

 Proposition 
 Complexity arises from complex historical processes 
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o C.H. Bennett (Logical Depth and Physical Complexity, IBM Research, Yorktown 
Heights, 1988). 
 

o Notion of organized complexity which is central for systems with a subtle causal 
history. 

 
 

 Definition 
 The Bennett’s logical depth of a system is the time required by a short 
 algorithm (in the sense of a standard universal Turing machine) to 
 generate it. It measures the time needed by a minimal program to 
 compute a certain string. 
 

 Bennett’s Logical Depth  

13 

o This crucial inclusion of computing time means that a high - or deep - value in 
logical depth shows that a system has a rich causal history.  
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 Implication for AI-Based Macro Strategies  
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o Deep systems cannot be produced from shallow machines. A shallow model 
trying to simulate a system with a deep causal structure can’t work. 

 
  

o A macro systematic strategy – with deep algorithmic subtleties – based on 
structural VAR or multi-linear models – with shallow algorithmic subtleties - is 
doomed to fail. 

  

o Bennett’s logical depth: algorithmic formalization of historical processes. It 
measures the computational content L 𝑆  of a system 𝑆 that differs from the 
Kolmogorov complexity K 𝑆  which measures its information content. 
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o Shallow or deep evolutionary systems cannot generate very sudden innovative 
computational structures. 
 

o Bennett’s slow growth law states. 
 
 Proposition 
 When such a system 𝑺𝒕 evolves, L 𝑺𝒕  cannot grow suddenly. 
 Making predictions about a system requires that this system must satisfy 
 a slow growth law.  

 
 
 
 

 Making Predictions Needs Slow Growth Law  

15 

deep system 
complex causal ity  deep computing structure  



W h y  A I  W o r k s  
AI-based macro strategy works in theory 

16 
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 The Problem of Learning is Mainly One of Programming  

17 

o The difficulty of making predictions about a system depends on its 
computational and informational content. Learning a system requires to model 
its algorithmic subtleties. 

  

o Two main approaches to create AI: 
 

• Ontology Teaching: large formalized knowledge base for supporting 
reasoning in a variety of domains. Machines do what we tell them to do 
explicitly. 
 

• Machine Learning: algorithmic structures trained with data so that they 
learn by their own. Machines eventually evolve. 

  

o Writing an explicit ontology with many billion incompressible lines of code 
would take a very long time. It is impossible and quoting Turing “some more 
expeditious methods seems desirable”. 
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Turing’s Legacy  
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o A.W. Turing in Computing Machinery and Intelligence (Mind, New Series, Vol. 
59, No. 236, Oct. 1950) about the simulation of the intelligence of an adult 
mind I 𝑎 . 
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 Why AI Works – Revisiting the Turing’s Proof  
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o Historical process that brought I 𝑎  to the state it is in. 
 

We distinguish: 
• the initial state of the child mind I0 (i.e. algorithmic structure) 
• the education and other experience L to which I0 has been subjected (i.e. 

supervised and unsupervised learning)  

o Instead of writing a very complex program simulating I 𝑎  it is easier to 
produce one simulating I0 which is less complex and compressible. 

o The problem has been divided into two parts: 
 

The child program I0 and the learning process L so that: 
 

I 𝒂 = L I𝟎  
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 AI? Deep Learning + Reinforcement Learning  
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o This approach works because a proof of concept exists: the human mind. 

o The revolution introduced by Turing is the possibility to create this: 
 

 
 
 
 

learning machine I0 

learning program L .  

which is able to evolve, adapt and grow in complexity helped with the right: 
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o 𝑆 is a deep object with a large informational and computational complexity. 
 

I 𝑆  is an incompressible AI that simulates exactly 𝑆. 
 
o A very long program is required to build I 𝑆 . But it is technically impossible to 

write a code with such a deep algorithmic complexity. 
 

o Therefore, any other method which is able to produce a program generating 
I 𝑆 will be unsurpassable. 

 Machine Learning Enables Artificial Intelligence  

21 

o A learning machine decomposing I 𝑆  into a [child program] that slowly 
becomes more complex with the right [education program] is a solution as it is 
shown by the human mind as a proof of concept. 
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o So what? AI works in theory. 
 

o In practice, if machine learning is powerful to explore the frontiers of a 
systematic reasoning it struggles to form logical bifurcations. The learning 
process needs to consume a large amount of data (in order to grasp the 
algorithmic subtleties of the studied system). 

 Human-Machine Collaboration: Centaur Solution  

22 

o Following G. Kasparov: the solution is to build a ‘centaur’ with is a collaboration 
between  human expertise and machine learning. 
 
 



B u i l d i n g  a n  A I - B a s e  
M a c r o  S t r a t e g y  
how to make AI work in real life 

23 
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o Solomonoff ‘s Theory of Inductive Inference, mathematically formalized combination of: 
 

 I n s p i r in g  T h e o re t ic a l  B u i ld in g  B lo c ks  

24 

 Ockham's razor or simplicity principle 
 Models should not multiplied beyond necessity 

 Principle of Multiple Explanations 
 If more than one model is consistent with observations, keep all the models 
 

o ‘Centaur’ learning workflow inspired by Bayes’ Probability Theory 

o Data-driven ‘reasoning on steroids’  inspired by Turing’s theory of computation 

 Turing’s universal machine 
 Everything computable by a human using fixed rules can also be computed faster 
 and better by a Turing’s machine. Explore the frontiers of reasoning with data. 
 



A I - B a s e d  M a c r o  S t r a t e g y ,  h u m a n - m a c h i n e  c o l l a b o r a t i o n  a n d  t h e  p r o b l e m  o f  c a u s a l i t y  |   

 Macro Driving Factors – Human Expertise   
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o Ever growing set of economic and financial data in order to describe the macro 
factors interdependencies (100 macro features for each economy, some can 
depend on hidden co-founders) 
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 Select and Compress Macro Information  
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Complex Macro World 

large Kolmogorov complexity 

 
Representation of the  World 

smaller Kolmogorov complexity 

 
Smaller Dimension 

less entropy 

Extracting Information 

Compressing Information 

Decompressing Information 

 
High Dimension 

large entropy 

• Activity 
• Inflation 
• Labour Market 
• Credit 
• Earnings 
• Risk Factors 
• Global Factors 
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 Algorithmic Workflow | Machine Learning  I0  
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o Unsupervised machine learning techniques build various macro-indicators 
reflecting different aspects of an economy 

main aspects of an 
economy many macro factor reduction 

o Machine learning techniques are used to model how this abstraction of the 
economy impacts asset prices by invoking a deep learning architecture 

asset expected 
return 

main aspect of an 
economy impact 

o Fight against the lack of stability and time variability: cross-validation and 
ensembling techniques are used to ensure the stability of the models and 
extensive grid-searches are used to tune the hyper-parameters . 
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E n v i r o n m e n t  

S t ra te gy  

         Observations 

        Asset Returns 
        Trade Costs 
        Parameters 

General 
Environment 

Portfolio 
Attribution 

I n t e ra c t i o n  

A g e n t  

o Reinforcement learning techniques are used to exploit these predictions. 

 Algorithmic Workflow | Machine Learning I 𝒂 = L I𝟎  
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asset expected return 
value 

 
macro-driving factors 

 
price process dynamics 

 
momentum 

representation of the  world 
asset price dynamics 

Recurrent Structure  Convolutional Structure  
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 AI-Based Model in Motion  
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model      causality 

Trading Signals 
portfolio construction 

Macro World 
 

Representation 

 
Price Process 

 
Representation 

 
World 

 
Representation 

 
reducing macro complexity 

 
preserving ‘algorithmic subtleties’ 

 
reducing market complexity 

 
preserving ‘algorithmic subtleties’ 

AI-Model 
predicting asset returns 



U n d e r s t a n d  t h e  W h y ( s )  
meta-learning and inferring causal structures  

31 
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o Betting on stability: classical machine learning techniques assume that the 
trained solution will be applied on the same kind of data as the training data. 
 

o Instability curse: in real life, stability (e.g. distributional properties) is at best 
local. Generalization is always a difficult problem. 
 

o For now, efficient machine learning solutions have to be highly specific (e.g. one 
specific model for one specific asset, practical centaur approach).  

o Usually, these deep learning systems remain blind to cause and effect. 
 

o In order to achieve a super-human performance (systematically being better 
than an expert), they need to learn more about causes and effects, to reason 
about causal relationships.  This is a much harder problem.  
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o Causal model from a Bayesian perspective: 
 

𝑃𝐹→𝐴 𝐹,𝐴 = 𝑃𝐹→𝐴 𝐴 𝐹  . 𝑃𝐹→𝐴 𝐹  

𝑭 𝑨 
? 

o Deep learning systems usually focus on correlation without causation.  They are 
often left at a loss when they are tested on ‘real life’ conditions that are 
dissimilar to the ones they were trained on. 
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 Ground Truth Mechanisms  
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o Following Y. Bengio, there is a need to go beyond transfer learning and it 
requires causal learning and causal reasoning. 
 

o The aim is to build framework ‘where one learns from a set of distributions 
arising from not necessarily known interventions, not simply to capture a joint 
distribution but to discover the underlying causal structure’. 

o  Naive example: 𝐹 = 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 causes 𝐴 = 𝑜𝑝𝑒𝑛 𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎, and not vice-versa. 
 

o  Changing the marginal probability of 𝑟𝑎𝑖𝑛𝑖𝑛𝑔 (because the weather changed) 
does not change the mechanism that relates 𝐹 and 𝐴 (captured by 𝑃 𝐴 𝐹 , but 
will have an impact on the marginal probability 𝑃 𝐴 . 
 

o Conversely, an agent’s intervention on 𝐴 = 𝑜𝑝𝑒𝑛 𝑢𝑚𝑏𝑟𝑒𝑙𝑙𝑎 will have no effect 
on the marginal distribution of 𝐹 = 𝑟𝑎𝑖𝑛𝑖𝑛𝑔. That asymmetry is generally not 
visible from the 𝐹, 𝐴  training pairs alone, until a change of distribution occurs. 
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o A possible solution should combine deep learning and formal reasoning with 
logical representations (remember the CYC ontology, which is aimed to 
reproduce human competence in common-sense reasoning). 
 

o But how? Very recently Y. Bengio et al. have proposed the beginning of a 
promising solution in A Meta-Transfer Objective for Learning to Disentangle 
Causal Mechanisms. The main idea is to build a meta-learner: 

• ‘[They] propose to meta-learn 
causal structures based on how 
fast a learner adapts to new 
distributions arising from sparse 
distributional changes (e.g. due to 
interventions, actions of agents 
and other sources of non-
stationarities).’ 
 

• ‘[They] show that under this 
assumption, the correct causal 
structural choices lead to faster 
adaptation to modified 
distributions because the changes 
are concentrated in one or just a 
few mechanisms when the 
learned knowledge is modularized 
appropriately’ 
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THE SHORT VOLATILITY CONUNDRUM

Source: SG Cross Asset Research/Cross Asset Quant
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Difference

Short S&P 1-month straddle - no hedging
Short S&P 1-month straddle - delta hedged at the close

◼ Same trade: selling 1-month straddles on the S&P, held until expiry

◼ But different hedging policies: no hedging (insurer point of view), hedging at the close (market maker point of view)
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MONETIZING BEHAVIOURAL PATTERN

Source: SG Cross Asset Research/Cross Asset Quant

◼ When negative news appears outside trading hours, markets drop sharply at the open. 

◼ The downtrend tends to persist until the close of the session. 

◼ During the next session, prices tend to revert, with the formation again of a new trend during the day. 
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THE INTRADAY TREND FOLLOWING STRATEGY IN PRACTICE

Source: SG Cross Asset Research/Cross Asset Quant



528/10/2019

FOCUSING ON THE SHORT TERM

Source: SG Cross Asset Research/Cross Asset Quant

◼ Following the commoditization of low frequency systematic strategies, intraday strategies are now becoming more 
accessible to investors.

◼ We introduce a simple trading rule. It aims at capturing intraday trends.

◼ When applying this signal to S&P 500 Mini Futures over a period of 15 + years. The strategy delivers an overall  good risk / 
return profile, with a shape of 0.78 on the period.
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A DEFENSIVE PROFILE

Source: SG Cross Asset Research/Cross Asset Quant

◼ The strategy is long daily variance and short intraday variance

◼ It exhibits a defensive profile

◼ Performance is proportional to overall volatility levels.
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THE INTRADAY TRAVELER

◼ When prices are trending, realised volatility tends to increase with time. 

◼ When prices revert to the mean, realised volatility decreases as the time span on which returns are measured decreases

◼ Prices are trend following intra-day and mean reverting extra-day
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THE KEY DRIVERS OF PERFORMANCE

Source: SG Cross Asset Research/Cross Asset Quant

◼ We developed an analytical framework for understanding the performance drivers of the strategy

◼ The performance is driven by three factors.

◼ The first and the second factors benefit from the daily trend and the trend’s uncertainty, respectively. They both have a 
positive impact on the strategy’s performance.

◼ The third factor captures the reversion to the mean of intraday prices. It has a negative impact on the performance.
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THE PRACTICAL DAY TRADER

Source: SG Cross Asset Research/Cross Asset Quant

◼ We have applied this same signal to 30+ liquid futures.

◼ Before taking into account transaction costs, most of them exhibit a strong intraday trend pattern. The most profitable ones 
remain US equities, VIX and some FX pairs.
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BEWARE OF TRADING COSTS

◼ Trading costs are different across assets

◼ They also change during the trading day.  It is generally more expensive to trade the open and the close.
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THE DEVIL IS IN THE EXECUTION

Source: SG Cross Asset Research/Cross Asset Quant

◼ Intraday strategies have a high turnover. They are particularly sensitive to transaction costs.

◼ After taking into account for transaction costs, only US and European equities remain sufficiently profitable.
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A DETOUR IN THE WORLD OF LEVERAGED ETFS

◼ Our assumption is that end of day flow activity has a great impact on intraday trend patterns.

◼ Passive mutual funds, ETF managers and option hedgers are all forced into trading at the end of the day. They create 
volatility and trends around the close.

◼ We study the case of leveraged ETFs using out ETFs team’s database. 
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ASSESSING THE IMPACT OF ‘NON DELTA-ONE’ ETFS

◼ We introduce the leveraged ETF impact indicator as the ratio between: 

◼ The sum of the “signed” AUM of ETFs related to this future multiplied by the absolute value of the ETF daily return 

◼ And the end-of-day dollar volume of each futures market. 

◼ We also introduce the leveraged ETF crowdedness indicator
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CAN ETF REBALANCING EXPLAIN THE INTRADAY TRADING PATTERN?
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SG RESEARCH ON SYSTEMATIC STRATEGIES

In preparation : 
- Value investing in Fixed Income
- Tail risk hedging
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SG LEADER IN CROSS ASSET RESEARCH
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with 20 years of experience on average 
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SG LEADER IN GLOBAL CROSS ASSET RESEARCH
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#1 Commodity Research

#1 Oil Research
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Why we’re all here J
The (long & winding) road from asset manager rags to riches

2
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6-10% net pay-out

10
-15

% net p
ay-

out

+ Gross fees
- FIX sales, 
operational, 
compliance & IT 
overhead

Break-even?

Payback
USD 1 MM  
start-up bill

2-3 years?

PERSONAL
CAPITAL

Your Franchise
Your RISK Your reward?

The 9-5 
corporate grind

Trade pea-nuts, 
make pea-nuts
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How we solve the problem
We fast track independent managers, on merit

3

PERSONAL
CAPITAL

DARWINIAN SELECTION

1st outside investor

Earn the management & 
success fees you merit

Pay for trading Get PAID for trading

From strategy to revenue, in WEEKS



How it works



STRICTLY PRIVATE AND CONFIDENTIAL

da
rw

in
ex

.c
om

You produce Alpha
On liquid Delta1 : Equities (single + indices), Commodities, FX, Crypto
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That’s all you FOCUS on. 
24/7. 365/365

Algorithmic Manual
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Investors buy your DARWIN
The DARWIN wraps your strategy so you collect asset management revenues
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ID, Ticker & 
Fact-sheet

Desktop or Mobile
24/5

DARWIN API

24/5 liquid,
trade-able price

Darwinex
diagnostics

Investor Capital

DARWIN = Turnkey Asset Management
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We make it ALL happen
Darwinex is your Prime Broker & Tech & Service Provider & Asset Manager J
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The DARWIN EXchange

AuMYOU

Prime 
Brokerage

Risk 
Management Reconciliation

Technology

Compliance Operations Sales
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The top Managers ear n well into 6 digit figures
And that’s before we even started selling
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30k / year

100k / year

300k / year

Investor AuM breed Alpha, 
Which attracts AuM!

All we’re missing is YOU.
The more Alpha, the more AuM. Repeat J
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1 Eco-system, 2 venues
Everyone competes on our Exchange. Your Private Label is your Turnkey Franchise

9

§ What’s the point?

§ What you sell

§ What investors pay

§ Who raises AuM?

§ What’s your cost?

From 0 to 1 Million AuM

DARWIN managed account 
Risk set at 10% monthly VaR by 

DARWINEX

Management + Success Fee
SET by DARWINEX

DARWINEX

Competitive Brokerage 
(for you & investors)

0 Up-Front
25% of revenues

To the infinite & beyond

Managed account, Optional Wrappers: 
Certificate, UCITS, AifMD

YOU set target risk, Darwinex monitors & 
certifies

Management + Success Fee
YOU SET

YOU
Our Cap Intro Eco-system

DARWINEX

Competitive Brokerage (you & investors)
Limited Up-front (single Thousands)

Variable Platform fee:
Cap intro fee: YOU set capacity & fees



STRICTLY PRIVATE AND CONFIDENTIAL

da
rw

in
ex

.c
om

Meet our Darwin EXchange
“Everyone’s alpha for 20% of Everyone’s Profit” Exchange
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INVESTORS

Crowd-source 
NOISE

Crowd-fund 
ALPHA

1 ) Manage risk 
(structure noise)

3) Meta-Label Data-sets

2) Encrypt Signal
(Protect IP)

Survival of the fittest.
100% transparency. 0% BS
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Introducing the Darwinex Private Label service
Your Private Label is your turnkey asset management franchise. 
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Prime Brokerage, Risk 
Management, Technology, 
Marketing, Operations, etc. 

Online Investor back-office 
system fit for 2020 (desktop & 

mobile)

Cap intro eco-
system to raise your 

AuM

YOUR brand
Anything you need 

to perform
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Meet AccurateQuant
Chicho is a Spanish regulated asset manager
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Movement Feedback
This is what fellow aspiring & emerging managers have said over the years
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“I really like the Darwinex concept and the 
way you guys run it!
But I have a concern that it may be sold in 
the future, to someone who tries to 
change it…” 

Emerging Manager, via Intercom

“First I would like to congratulate you and 
your team on an amazing website and 
service. Darwinex is Head and Shoulders 
above competitors”

Investor, to Customer Service

“Probably the best broker around and 
Darwinex is setting a new standard for the 
competition”

Anchorpoint, via MyFXBook

“… the ingenuity of matching emerging 
managers with capital online, and landing 
investors with real funds,… it’s just clever 
and a self-sustaining loop kind of thing”

Andrei, via Quora

“… Darwinex looks like a grown-up social 
trading platform, with good safeguards 
for investors and an attractive package 
for ambitious discretionary and algo
traders”

Prospective user, via Quora

User A: “I don’t listen to economic “press” 
it’s all designed to draw suckers in”
User B: “Agree – the only piece I listen to is 
Darwinex’s Trader Movement Podcast”

Spontaneous Exchange on Twitter
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What we bring to YOUR table
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2. 0 start-up risk
• Trade with a competitive bróker, 

on your platform of choice
• 0 up-front expense. 0 fix 

overhead

3. 0 operational risk

• All costs variable
• Leverage infrastructure 

proven on thousands of 
managers and trillions 
of volume

4. Shortest path to revenues
• From strategy to wrapper in days

(managed account) / weeks (wrappers)
• EUR 60 MM AuM (seed + 3rd party AuM)

5. Aligned model
• We NEED you to succeed long term
• We’re not here to bill legal fees, 

charge cap intro retainers, etc.

6. By managers, for YOU

• We ARE in the same shoes as 
you

• It’s as much about the vision, 
as it is about the money

1. 100% FOCUS
• We preserve your band-

width 
• You tackle the genius bit
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What is alternative data?
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Alternative (adj.)
al·ter·na·tive | \ ȯl-ˈtər-nə-tiv
- different from the usual or conventional
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What is alternative data?
Dataset types
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Alternative data 
New sources
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SDK installed in a
mobile app

SDK captures app 
users location

Coordinates are
mapped to POI
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Alt approach to traditional data
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Corporate earnings 
statement

NLP – parse for 
terminology

Compare QOQ 
terminology

Maximise alpha 
(avg. 22% per year)

[Source: Cohen et al, 2019]
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What is alternative data?
Is this really a new phenomenon?
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50%

20%

30%

CURRENT IMPLEMENTATION
OF ALTERNATIVE DATA

Yes

No, but plan to incorporate
in the next 12 months

No

[Note: Based on 30 respondents. 
Source: Greenwich Associates 2018 
Future of Investment Research 
Study]

[Source:Greenwich Associates, Q3 2018]
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How do funds typically source this 
data?
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Hypothesis to dataset

Dataset to hypothesis
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Neudata
What do we do?
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3) Provide informed 
commentary on data

2) Score datasets on 
quality factors 

4) Answer use case 
specific questions 

1) Scout alternative 
datasets



your 
logo

Neudata
Our universe
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625+ data providers 880+ datasets500 asset managers
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Data trends
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Daily frequenciesN. American dominancePublic equity applicability

North 
America

46%Europe
31%

Asia-
Pacific
23%

Excludes all other regions & datasets defined by Neudata as global
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Pricing trends
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• Regulation (Google)
• Legislation (web 

scraping, open banking)
• “Where one door closes, 

another one opens”
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Trend Recap
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01
02
03

Lower price datasets are more common than you 
may think (and we expect this to remain the case).

As the market for data grows, there will be more 
legislation that will affect the supply of data.

Datasets that apply to North American public equities 
are the most popular.
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For further enquiries please contact 
jose@neudata.co

mailto:jose@neudata.co
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